Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

Dong-Hong Li,^a Jun-Sheng Hao,^a* Hong-Bo Tong,^b Shu-Ping Huang,^b Yong-Bin Zhang^a and Chi-Zhong Xia^a*

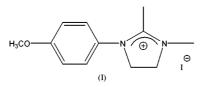
^aSchool of Chemistry and Chemical Engineering, University of Shanxi, Taiyuan, Shanxi 030006, People's Republic of China, and ^bInstitute of Modern Chemistry, University of Shanxi, Taiyuan, Shanxi 030006, People's Republic of China

Correspondence e-mail: xiac@public.ty.sx.cn

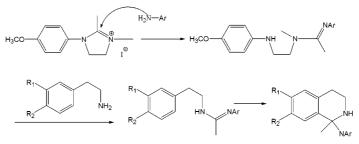
Key indicators

Single-crystal X-ray study T = 183 K Mean σ (C–C) = 0.005 Å R factor = 0.026 wR factor = 0.063 Data-to-parameter ratio = 15.7

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e. The title compound, $C_{12}H_{17}N_2O^+ \cdot I^-$, is a new example of a tetrahydrofolate (THF) co-enzyme model. The N-C-N moiety of the imidazoline ring shows C-N bond lengths of 1.306 (4) and 1.326 (4) Å, suggesting that the positive charge is delocalized.


3-(4-Methoxyphenyl)-1,2-dimethyl-4,5-

dihydroimidazolium iodide


Received 5 April 2004 Accepted 19 April 2004 Online 24 April 2004

Comment

Tetrahydrofolate (THF) co-enzymes are involved in the biological transfer of a one-carbon fragment at different oxidation levels (Xia *et al.*, 2000, 2002). Though transfer reactions of practical significant models of 5,10-methylene–THF have been reported (Bieraügel *et al.*, 1983), the study of THF co-enzyme models can provide a valuable class of reagents.

As a new example of this co-enzyme model, the title compound, (I), has been synthesized. The mechanism of the tetrahydrofurate co-enzymes model for (I) is presented in the scheme below.

The molecular structure of (I) is shown in Fig. 1. The dihedral angle between the benzene and imidazolium rings is $50.4 (3)^{\circ}$. The C5–N1 bond length is 1.419 (4) Å, which is shorter than the standard single C–N bond, indicating some degree of π -electron overlap. Meanwhile, in the imidazolium ring, the lengths of N2–C10 and N1–C10 are 1.306 (4) and 1.326 (4) Å, respectively. These values indicate that the π -electron density is delocalized aver the N2–C10–N1 moiety. Thus, atom C10 is expected to be the reaction point of nucleophilic reagents.

Experimental

1-Methyl-2-(4-methoxyphenyl)imidazoline (1.90 g, 10 mmol) and iodomethane (1.9 ml, 30 mmol) were refluxed in 20 ml dry ether for

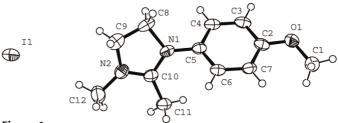
© 2004 International Union of Crystallography Printed in Great Britain – all rights reserved 1 h. A large amount of white solid separated out. The solution was cooled to room temperature and the precipitate was collected by filtration and crystallized from ethyl alcohol, giving 3.04 g (80%) of the title compound, (I). Crystals were grown from CHCl₃ solution by slow evaporation (m.p. 383–387 K). ¹H NMR (CDCl₃): 2.07 (*s*, 3H), 3.11 (*d*, 3H), 3.75 (*t*, 2H), 4.16 (*t*, 2H), 7.02 (*d*, 2H), 7.36; ¹³C NMR (CDCl₃): 166.50, 160.24, 128.55, 128.35, 115.23, 55.68, 52.32, 50.75, 35.16, 13.16.

Crystal data

$C_{12}H_{17}N_2O^+ \cdot I^-$	$D_x = 1.673 \text{ Mg m}^{-3}$
$M_r = 332.18$	Mo $K\alpha$ radiation
Monoclinic, $P2_1/n$	Cell parameters from 3377
a = 11.4580 (17) Å	reflections
$b = 7.5134 (12) \text{\AA}$	$\theta = 2.7 - 26.9^{\circ}$
c = 16.307 (3) Å	$\mu = 2.41 \text{ mm}^{-1}$
$\beta = 110.014 \ (2)^{\circ}$	T = 183 (2) K
$V = 1319.0 (4) \text{ Å}^3$	Block, colorless
Z = 4	$0.40\times0.20\times0.10~\mathrm{mm}$

Data collection

Bruker SMART CCD area-detector	2324 independent reflections
diffractometer	2083 reflections with $I > 2\sigma(I)$
ω scans	$R_{\rm int} = 0.019$
Absorption correction: multi-scan	$\theta_{\rm max} = 25.0^{\circ}$
(SADABS; Sheldrick, 1996)	$h = -13 \rightarrow 13$
$T_{\min} = 0.446, \ T_{\max} = 0.795$	$k = -8 \rightarrow 8$
5195 measured reflections	$l = -19 \rightarrow 18$


Refinement

Refinement on F^2	H-atom parameters constrained
$R[F^2 > 2\sigma(F^2)] = 0.026$	$w = 1/[\sigma^2 (F_o^2) + (0.0347P)^2]$
$wR(F^2) = 0.063$	where $P = (F_o^2 + 2F_c^2)/3$
S = 1.04	$(\Delta/\sigma)_{\rm max} = 0.001$
2324 reflections	$\Delta \rho_{\rm max} = 0.92 \ {\rm e} \ {\rm \AA}^{-3}$
148 parameters	$\Delta \rho_{\rm min} = -0.29 \ {\rm e} \ {\rm \AA}^{-3}$

Table 1

Selected geometric parameters (Å, °).

N1-C10	1.326 (4)	N2-C10	1.306 (4)
N1-C5	1.419 (4)	N2-C12	1.456 (4)
N1-C8	1.491 (4)	N2-C9	1.460 (4)
N2-C10-N1	112.3 (3)		
C1-O1-C2-C7	5.2 (4)	C8-N1-C5-C4	-46.2 (4)
C10-N1-C5-C6	-50.2(4)		

Figure 1

The molecular structure of (I), showing the atom-numbering scheme. Displacement ellipsoids are drawn at the 50% probability level.

All H atoms were initially located in difference Fourier maps. The methyl H atoms were then constrained to an ideal geometry, with C—H distances of 0.98 Å and $U_{iso}(H) = 1.5U_{eq}(C)$, but each group was allowed to rotate freely about its C–C bond. Other H atoms were placed in geometrically idealized positions and constrained to ride on their parent atoms, with C–H distances in the range 0.95–1.00 Å and $U_{iso}(H) = 1.2U_{eq}(C)$.

Data collection: *SMART* (Siemens, 1996); cell refinement: *SAINT* (Siemens, 1996); data reduction: *SAINT*; program(s) used to solve structure: *SHELXS*97 (Sheldrick, 1997); program(s) used to refine structure: *SHELXL*97 (Sheldrick, 1997); molecular graphics: *ORTEP*-3 (Farrugia, 1997); software used to prepare material for publication: *SHELXL*97.

This work was supported by the National Nature Science Foundation of China (No. 20272034, to CZX).

References

- Bieraügel, H., Plemp, R., Hiemstra, H. C. & Pandit, U. K. (1983). *Tetrahedron*, **39**, 3971–3979.
- Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
- Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.
- Sheldrick, G. M. (1997). SHELXL97 and SHELXS97. University of Göttingen, Germany.
- Siemens (1996). *SMART* and *SAINT*. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.

Xia, C.-Z., Tang, Y.-Q. & Zhou, P.-W. (2000). J. Heterocycl. Chem. 37, 1329– 1331.

Xia, C.-Z., Wang, H.-X., Zhao, B.-J., Chen, J.-X., Kang, C.-M., Ni, Y.-P. & Zhou, P.-W. (2002). *Synth. Commun.* **32**, 1447–1455.